On the construction of extreme learning machine for online and offline one-class classification - An expanded toolbox

نویسندگان

  • Chandan Gautam
  • Aruna Tiwari
  • Qian Leng
چکیده

One-Class Classification (OCC) has been prime concern for researchers and effectively employed in various disciplines. But, traditional methods based one-class classifiers are very time consuming due to its iterative process and various parameters tuning. In this paper, we present six OCC methods and their thirteen variants based on extreme learning machine (ELM) and Online Sequential ELM (OSELM). Our proposed classifiers mainly lie in two categories: reconstruction based and boundary based, where three proposed classifiers belong to reconstruction based and three belong to boundary based. We are presenting both types of learning viz., online and offline learning for OCC. Out of six methods, four are offline and remaining two are online methods. Out of four offline methods, two methods perform random feature mapping and two methods perform kernel feature mapping. We present a comprehensive discussion on these methods and their comparison to each other. Kernel feature mapping based approaches have been tested with RBF kernel and online version of one-class classifiers are tested with both types of nodes viz., additive and RBF. It is well known fact that threshold decision is a crucial factor in case of OCC, so, three different threshold deciding criteria have been employed so far and analyses the effectiveness of one threshold deciding criteria over another. Further, these methods are tested on two artificial datasets to check there boundary construction capability and on eight benchmark datasets from different discipline to evaluate the performance of the classifiers. Our proposed classifiers exhibit better performance compared to ten traditional one-class classifiers and ELM based two one-class classifiers. Through proposed one-class classifiers, we intend to expand the functionality of the most used toolbox for OCC i.e. DD toolbox. All of our methods are totally compatible with all the present features of the toolbox.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Peer-Assessment and Student-Driven Negotiation of Meaning: Two Ingredients for Creating Social Presence in Online EFL Social Contexts

With the current availability of state-of-the-art technology, particularly the Internet, people have expanded their channels of communication. This has similarly led to many people utilizing technology to learn second/foreign languages. Nevertheless, many current computer-assisted language learning (CALL) programs still appear to be lacking in interactivity and what is termed social presence, w...

متن کامل

Online Learning with Regularized Kernel for One-class Classification

This paper presents an online learning with regularized kernel based one-class extreme learning machine (ELM) classifier and is referred as “online RK-OC-ELM”. The baseline kernel hyperplane model considers whole data in a single chunk with regularized ELM approach for offline learning in case of one-class classification (OCC). Further, the basic hyper plane model is adapted in an online fashio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 261  شماره 

صفحات  -

تاریخ انتشار 2017